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Original statement for the sphere

A.D. Alexandrov, 1942

Let m(0,+) be a flat (0-curvature) metric on the sphere S2 with
conical singularities of positive singular curvature. Then

1 There exists a convex polytope P in R3 such that P realizes
m(0,+) (i.e. the induced metric on P is isometric to m(0,+)).

2 P is unique, up to congruences.
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The proof extends easily to the other constant curvatures

1 A (1,+)-metric on the sphere is realized by a unique (up to
congruence) convex polytope in the 3-d sphere.

2 A (−1,+)-metric the sphere is realized by a unique (up to
congruence) convex polytope in the 3-d hyperbolic space.
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Original statement for the sphere

A convex polytope is a projective object. Model spaces are
(pseudo)-spheres in a vector space.
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A convex polytope is a projective object. Model spaces are
(pseudo)-spheres in a vector space.

a x y b

d(x , y) = 1
2 ln([a, b, x , y ])
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Hyperbolic extention

Alexandrov Theorem can be extended to the realization of
hyperbolic metrics with cusps and infinite ends (Rivin, Schlenker).
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Hyperbolic extention

Of course, induced metric is not a projective data.
But one way to prove such results is to prove first an infinitesimal
rigidity result.
And infinitesimal rigidity is a projective property!

Alexandrov Theorem for compact surfaces



Interlude on projective nature of infinitesimal rigidity

Darboux, Sauer, Knebelman 1930 , Pogorelov, Volkov

Let (M, g) and (M, g) be two (pseudo-)Riemannian manifolds and
f a map sending geodesics of g to geodesics of g . Let λ = |g |/|g |.
Let K be a Killing field of (M, g). Then the vector field K of
(M, g) defined by

g(K ,X ) = g(λ
1

n+1 K ,X ), ∀X ∈ TM,

is a Killing field of (M, g).
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Interlude on projective nature of infinitesimal rigidity

The proof is a simple consequence of the Weyl equation for
connections having the same geodesics

∇XY −∇XY =
1
2

1
n + 1

(X . lnλ)Y +
1
2

1
n + 1

(Y . lnλ)X .
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Interlude on projective nature of infinitesimal rigidity

The proof is a simple consequence of the Weyl equation for
connections having the same geodesics

∇XY −∇XY =
1
2

1
n + 1

(X . lnλ)Y +
1
2

1
n + 1

(Y . lnλ)X .

There is another interpretation based on infinitesimal rigidity of
frameworks (see Ivan Izmestiev).
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De Sitter extention

The outside of the projective model of the hyperbolic space is a
projective model of de Sitter space.
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De Sitter extention

The outside of the projective model of the hyperbolic space is a
projective model of de Sitter space.

x

y

d(x , y) = 1
2 ln([a, b, x , y ])
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De Sitter extention

So we can realize Riemannian metrics on the sphere in de Sitter
space.
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So we can realize Riemannian metrics on the sphere in de Sitter
space.
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De Sitter extention

Due to convexity in a Lorentzian space, the singular curvatures at
the vertices are negative.
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De Sitter extention

Due to convexity in a Lorentzian space, the singular curvatures at
the vertices are negative.

Rivin–Hodgson, Inventiones, 1993

Let m(1,−) be a spherical metric on the sphere with conical
singularities of negative singular curvature [and length of
contractible geodesics > 2π]. Then

1 There exists a convex polytope P in de Sitter space such that
P realizes m(1,−).

2 P is unique, up to congruences.
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De Sitter extention

Due to convexity in a Lorentzian space, the singular curvatures at
the vertices are negative.

Rivin–Hodgson, Inventiones, 1993

Let m(1,−) be a spherical metric on the sphere with conical
singularities of negative singular curvature [and length of
contractible geodesics > 2π]. Then

1 There exists a convex polytope P in de Sitter space such that
P realizes m(1,−).

2 P is unique, up to congruences.

By projective duality, this theorem is equivalent to a realization
theorem for hyperbolic polyhedra with prescribed Gauss image.
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Higher genus?

Due to Gauss–Bonnet formula, there does not exist other
(K , ε)-metric on the sphere, K ∈ {−1, 0, 1}, ε ∈ {−,+}, than
(0,+), (1,+), (−1,+), (1,−).

So the question is: what about (K , ε)-metrics on compact
surface of higher genus?
We can’t realize them as convex polyhedra, as
compactness+convexity ⇒ genus 0.
We will realize the universal cover of the metric, as a convex
polyhedral surface equivariant under the action of the
fundamental group.
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Example of flat surfaces of genus > 1

For a simpliest example, imagine a tiling of the hyperboloid in 3d
Minkowski space by a genus 2 cocompact group.
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Example of flat surfaces of genus > 1

Take the convex hull of the vertices of the tiling in the ambiant
Minkowski space.
(Convex hull construction, Näätänen–Penner, 1991)
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We obtain a convex polyhedra surface, called Fuchsian, with an
infinite number of vertices, invariant under the action of the group.
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Example of flat surfaces of genus > 1

Take the convex hull of the vertices of the tiling in the ambiant
Minkowski space.
(Convex hull construction, Näätänen–Penner, 1991)
We obtain a convex polyhedra surface, called Fuchsian, with an
infinite number of vertices, invariant under the action of the group.
Faces are Euclidean convex polygons.

The quotient of this polyhedral
surface is a compact surface of
genus 2 with a flat metric with
one conical singularity of
curvature 2π−8× 3π

4 = −4π < 0
(cone-angle 6π).
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Example of flat surfaces of genus > 1

internet
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file:/home/f/unison/voyages/Moscou-08-2010/expose/jmolinternet/fuchs/fuchs.html
http://fillastre.u-cergy.fr/jmolinternet/fuchs/anim.html


Example of flat surfaces of genus > 1
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Example of hyperbolic torus

In the projective model of hyperbolic 3d space, horospheres are
ellipsoids tangent to the unit sphere and isometric to the Euclidean
space.
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Example of hyperbolic torus

In the projective model of hyperbolic 3d space, horospheres are
ellipsoids tangent to the unit sphere and isometric to the Euclidean
space.
Z× Z acts by isometries on a horosphere. The convex hull of the
orbit of one point is a simpliest example of a convex parabolic
polyhedra.
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Example of hyperbolic torus

In the projective model of hyperbolic 3d space, horospheres are
ellipsoids tangent to the unit sphere and isometric to the Euclidean
space.
Z× Z acts by isometries on a horosphere. The convex hull of the
orbit of one point is a simpliest example of a convex parabolic
polyhedra.
The quotient is a torus with a hyperblic metric with one conical
singularity of positive curvature.
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Example of hyperbolic torus

internet
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file:/home/f/unison/voyages/Moscou-08-2010/expose/jmolinternet/par/par.html
http://fillastre.u-cergy.fr/jmolinternet/par/anim.html


How many cases?

The curvature K ∈ {−1, 0, 1}.
The sign of the singular curvatures ε ∈ {−,+}.
The genus g ∈ {0, 1, > 1}.

By Gauss–Bonnet, there are only 10 possible (K , ε, g).
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Table of cases

g K ε

0 −1 + A.D. Alexandrov
0 0 + A.D. Alexandrov
0 1 + A.D. Alexandrov
0 1 − (Large) Rivin–Hodgson
1 −1 + Izmestiev–F.
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The general statement

S is a compact surface of genus g . K ∈ {−1, 0, 1}, ε ∈ {−,+}.

Mε
K is the 3d model space of curvature K (Riemannian if ε = 1,

Lorentzian if ε = −).

Alexandrov Theorem for compact surfaces

Let m be a (K , ε)-metric on S (large for (1,−)). Then
1 There exists a convex polyhedral surface P ⊂ Mε

K and a group
of isometries Γ, acting cocompatly on a totally umbilic surface,
such that P/Γ is isometric to (S ,m).

2 (P, Γ) is the unique couple of this kind, up to congruences.
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Благодарю вас за внимание
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